18 research outputs found

    Heparan Sulfate Induces Necroptosis in Murine Cardiomyocytes: A Medical-In silico Approach Combining In vitro Experiments and Machine Learning.

    Get PDF
    Life-threatening cardiomyopathy is a severe, but common, complication associated with severe trauma or sepsis. Several signaling pathways involved in apoptosis and necroptosis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling causative factors are still debatable. Heparan sulfate (HS) fragments belong to the class of danger/damage-associated molecular patterns liberated from endothelial-bound proteoglycans by heparanase during tissue injury associated with trauma or sepsis. We hypothesized that HS induces apoptosis or necroptosis in murine cardiomyocytes. By using a novel Medical-In silico approach that combines conventional cell culture experiments with machine learning algorithms, we aimed to reduce a significant part of the expensive and time-consuming cell culture experiments and data generation by using computational intelligence (refinement and replacement). Cardiomyocytes exposed to HS showed an activation of the intrinsic apoptosis signal pathway via cytochrome C and the activation of caspase 3 (both p < 0.001). Notably, the exposure of HS resulted in the induction of necroptosis by tumor necrosis factor α and receptor interaction protein 3 (p < 0.05; p < 0.01) and, hence, an increased level of necrotic cardiomyocytes. In conclusion, using this novel Medical-In silico approach, our data suggest (i) that HS induces necroptosis in cardiomyocytes by phosphorylation (activation) of receptor-interacting protein 3, (ii) that HS is a therapeutic target in trauma- or sepsis-associated cardiomyopathy, and (iii) indicate that this proof-of-concept is a first step toward simulating the extent of activated components in the pro-apoptotic pathway induced by HS with only a small data set gained from the in vitro experiments by using machine learning algorithms.This work was supported by an intramural grant to LM (START 46/16) and EZ (START 113/17). LM has received a grant by the Deutsche Forschungsgemeinschaft (DFG, MA 7082/1–1). We thank Dr Claycomb and his coworkers for providing the HL-1 cells and a detailed documentation. The Immunohistochemistry and Confocal Microscopy Unit, a core facility of the Interdisciplinary Center for Clinical Research (IZKF) Aachen, within the Faculty of Medicine at the RWTH Aachen University, supported this work

    Evolutionary Algorithm Optimized Centralized Offline Localization and Mapping

    No full text

    Instinct-driven dynamic hardware reconfiguration: evolutionary algorithm optimized compression for autonomous sensory agents

    No full text
    © 2017 ACM. Advancement in miniaturization of autonomous sensory agents can play a profound role in many applications such as the exploration of unknown environments, however, due to their miniature size, power limitations poses a severe challenge. In this paper, and inspired from biological instinctive behaviour, we introduce an instinct-driven dynamic hardware reconfiguration design scheme using evolutionary algorithms on behaviour trees. Moreover, this scheme is projected on an application scenario of autonomous sensory agents exploring an inaccessible dynamic environment. In this scenario, agent's compression behaviour-introduced as an instinct-is critical due to the limited energy available on the agents. This emphasises the role of optimization of agents resources through dynamic hardware reconfiguration. In that regard, the presented approach is demonstrated using two compression techniques: Zeroorder hold and Wavelet compression. Behavioural and hardwarebased power models of these techniques, integrated with behaviour trees (BT), are implemented to facilitate off-line learning of the optimum on-line behaviour, thus, facilitating dynamic reconfiguration of agents hardware.status: publishe
    corecore